A Semi-Supervised Metric Learning for Content-Based Image Retrieval

نویسندگان

  • Imane Daoudi
  • Khalid Idrissi
چکیده

In this paper, the authors propose a kernel-based approach to improve the retrieval performances of CBIR systems by learning a distance metric based on class probability distributions. Unlike other metric learning methods which are based on local or global constraints, the proposed method learns for each class a nonlinear kernel which transforms the original feature space to a more effective one. The distances between query and database images are then measured in the new space. Experimental results show that the kernel-based approach not only improves the retrieval performances of kernel distance without learning, but also outperforms other kernel metric learning methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Linear Metric Adaptation with Application to Image Retrieval

Many supervised and unsupervised learning algorithms are very sensitive to the choice of an appropriate distance metric. While classification tasks can make use of class label information for metric learning, such information is generally unavailable in conventional clustering tasks. Some recent research sought to address a variant of the conventional clustering problem called semi-supervised c...

متن کامل

Relaxational metric adaptation and its application to semi-supervised clustering and content-based image retrieval

The performance of many supervised and unsupervised learning algorithms is very sensitive to the choice of an appropriate distance metric. Previous work in metric learning and adaptation has mostly been focused on classification tasks by making use of class label information. In standard clustering tasks, however, class label information is not available. In order to adapt the metric to improve...

متن کامل

Stepwise Metric Adaptation Based on Semi-Supervised Learning for Boosting Image Retrieval Performance

For a specific set of features chosen for representing images, the performance of a content-based image retrieval (CBIR) system depends critically on the similarity measure used. Based on a recently proposed semisupervised metric learning method called locally linear metric adaptation (LLMA), we propose in this paper a stepwise LLMA algorithm for boosting the retrieval performance of CBIR syste...

متن کامل

Statistical Machine Learning for Bridging the Semantic Gap in Image Retrieval

of thesis entitled: Statistical Machine Learning for Bridging the Semantic Gap in Image Retrieval Submitted by HOI, Chu Hong (Steven) With the explosive growth of multimedia data, more and more research attentions have been devoted to visual information retrieval. Image retrieval, particularly content-based image retrieval (CBIR), has been actively studied in multimedia information retrieval co...

متن کامل

Localized Content-Based Image Retrieval Using Semi-Supervised Multiple Instance Learning

In this paper, we propose a Semi-Supervised MultipleInstance Learning (SSMIL) algorithm, and apply it to Localized ContentBased Image Retrieval(LCBIR), where the goal is to rank all the images in the database, according to the object that users want to retrieve. SSMIL treats LCBIR as a Semi-Supervised Problem and utilize the unlabeled pictures to help improve the retrieval performance. The comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJCVIP

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011